165 research outputs found

    Effective Parameters Controlling Sterol Transfer: A Time‑Resolved Small‑Angle Neutron Scattering Study

    Get PDF
    Though cholesterol is the most prevalent and essential sterol in mammalian cellular membranes, its precursors, post-synthesis cholesterol products, as well as its oxidized derivatives play many other important physiological roles. Using a non-invasive in situ technique, time-resolved small angle neutron scattering, we report on the rate of membrane desorption and corresponding activation energy for this process for a series of sterol precursors and post-synthesis cholesterol products that vary from cholesterol by the number and position of double bonds in B ring of cholesterol’s steroid core. In addition, we report on sterols that have oxidation modifications in ring A and ring B of the steroid core. We find that sterols that differ in position or the number of double bonds in ring B have similar time and energy characteristics, while oxysterols have faster transfer rates and lower activation energies than cholesterol in a manner generally consistent with known sterol characteristics, like Log P, the n-octanol/water partitioning coefficient. We find, however, that membrane/water partitioning which is dependent on lipid-sterol interactions is a better predictor, shown by the correlation of the sterols’ tilt modulus with both the desorption rates and activation energy

    Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry

    Get PDF
    Reduced graphene oxide (RGO) containing composite hydrogels, based on poly(N-isopropylacrylamide) (PNIPA) were prepared by two different methods: (i) by incorporating RGO directly into the polymer matrix; (ii) applying a post-synthesis reduction of the graphene-oxide (GO) already incorporated into the polymer. The samples were compared by various microscopic (small angle neutron scattering, differential scanning calorimetry, 1H NMR spectroscopy, thermogravimetry) and macroscopic (kinetic and equilibrium swelling properties and mechanical testing) techniques. Results from microscopic and macroscopic measurements show that the dispersity of the nanoparticles as well as their interaction with the polymer chains are influenced by their surface chemistry. Incorporation of nanoparticles limits the shrinkage and slows down the kinetics of the thermal response. Both thermogravimetric and solid-state NMR measurements confirmed strong polymer – nanoparticle interaction when hydrophilic GO was used in the synthesis. In these cases, the slow thermal response may be explained by the decrease of the free volume inside the nanocomposite matrix caused by a hypernodal structure. Our results imply that both the chemistry and the concentration of incorporated graphene derivatives are promising in tuning the thermal responsivity of PNIPA

    The Connection between Biaxial Orientation and Shear Thinning for Quasi-Ideal Rods

    Get PDF
    The complete orientational ordering tensor of quasi-ideal colloidal rods is obtainedas a function of shear rate by performing rheo-SANS (rheology with small angle neutronscattering) measurements on isotropic fd-virus suspensions in the two relevant scatteringplanes, the flow-gradient (1-2) and the flow-vorticity (1-3) plane. Microscopic ordering canbe identified as the origin of the observed shear thinning. A qualitative description of therheological response by Smoluchowski, as well as Doi–Edwards–Kuzuu theory is possible,as we obtain a master curve for different concentrations, scaling the shear rate with theapparent collective rotational diffusion coefficient. However, the observation suggests that theinterdependence of ordering and shear thinning at small shear rates is stronger than predicted.The extracted zero-shear viscosity matches the concentration dependence of the self-diffusion ofrods in semi-dilute solutions, while the director tilts close towards the flow direction already atvery low shear rates. In contrast, we observe a smaller dependence on the shear rate in the overallordering at high shear rates, as well as an ever-increasing biaxiality

    Small-angle neutron scattering and Molecular Dynamics structural study of gelling DNA nanostars

    Full text link
    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed by 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nano star concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor theoretically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.Comment: 9 pages, 5 figure

    Measurement of glucose exclusion from the fully hydrated DOPE inverse hexagonal phase

    Get PDF
    The degree of exclusion of glucose from the inverse hexagonal HII phase of fully hydrated DOPE is determined using contrast variation small angle neutron scattering and small angle X-ray scattering. The presence of glucose is found to favour the formation of the non-lamellar HII phase over the fluid lamellar phase, over a wide range of temperatures, while having no significant effect on the structure of the HII phase. Glucose is preferentially excluded from the lipid-water interface resulting in a glucose concentration in the HII phase of less than half that in the coexisting aqueous phase. The degree of exclusion is quantified and the results are consistent with a hydration layer of pure water adjacent to the lipid head groups from which glucose is excluded. The osmotic gradient created by the difference in glucose concentration is determined and the influence of glucose on the phase behaviour of non-lamellar phase forming lipid systems is discussed
    • …
    corecore